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Préambule

Ces problèmes sont difficiles et sont proposés par des chercheurs, des chercheuses, des étu-
diants et des étudiantes en mathématiques. Ils n’admettent pas toujours, à la connaissance du
jury, de solution complète mais sont accessibles à des élèves de lycée, c’est-à-dire que les auteurs
et les autrices garantissent qu’un travail de recherche élémentaire peut être mené sur ces pro-
blèmes. Le jury n’attend pas que les équipes résolvent entièrement un problème, mais qu’elles
en comprennent les enjeux, résolvent des cas particuliers, repèrent les difficultés et proposent
des pistes de recherche. Attention, les questions ne sont pas toujours classées par ordre croissant
de difficulté. Enfin, il n’est pas nécessaire de traiter tous les problèmes : chaque équipe peut en
refuser un certain nombre sans pénalité. On se reportera au règlement pour plus de détails.

Ces problèmes sont distribués sous licence CC-BY-SA 4.0. En cas de questions concernant
le tournoi ou les énoncés, consulter le site www.tfjm.org ou contacter les organisateurs et
organisatrices à l’adresse contact@tfjm.org.
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Notations
{a1,a2, . . . ,an} ensemble contenant les éléments a1,a2, . . . ,an
N∗ = {1,2, . . .} ensemble des nombres entiers naturels non nuls
R ensemble des nombres réels
R∗+ ensemble des nombres réels strictement positifs non nuls
PA(B) probabilité conditionnelle de B sachant A.
n! factoriel n, c’est dire n× (n−1)× . . .×1.

https://www.tfjm.org
mailto:contact@tfjm.org


Problèmes du 16ème TFJM2 2

1. Guerre à l’apéro

Anita et Auriane prennent l’apéro ensemble. Elles ont devant elles un tas de chips natures à
l’ancienne composé de n piles de n chips, avec n > 1 entier. Elles vont à tour de rôle manger
des chips sur le tas de la manière suivante : chacune d’elles peut prendre autant de chips qu’elle
veut parmi celles qui sont découvertes, c’est-à-dire sur le dessus d’une pile, au début de leur
tour. Elles doivent à chaque fois prendre au moins une chips. Le jeu se poursuit jusqu’à ce qu’il
n’y ait plus de chips sur la table. Anita commence.

Un exemple de partie est présenté figure 1. A chaque étape, les chips en bleu sont celles qui
peuvent être mangées. Au total, Anita a mangé 7 chips et Auriane a mangé 2 chips pendant
cette partie.

Figure 1. Un exemple de partie

1.Combien y a-t-il d’états possibles du tas de chips ?
2.Anita et Auriane sont gourmandes et cherchent donc à manger le plus de chips possible au
cours de la partie.

a) Dans cette question, Auriane joue de manière gloutonne : à son tour, elle prend toutes
les chips qu’elle peut. Combien de chips au maximum Anita peut-elle s’assurer d’avoir,
en fonction de n ?

b) Maintenant Auriane réfléchit avant de jouer. Combien de chips au maximum Anita peut-
elle s’assurer de manger en fonction de n, quelle que soit la façon dont joue Auriane ?

3.Dans cette question, la chips en bas à gauche est une délicieuse chips goût barbecue que
Anita et Auriane veulent absolument manger. En fonction de n, Anita peut-elle s’assurer de la
manger ?
4.Dans cette question, la rangée numéro k en partant du bas est composée de chips avec un
goût spécial qui ont une valeur v. A la fin de la partie, pour chaque joueuse, si elle a mangé C
chips classiques et S chips spéciales, sa satisfaction est C+Sv. En fonction de n et k, quel
est la satisfaction maximale qu’Anita peut s’assurer d’avoir, quelle que soit la façon dont joue
Auriane, si les chips spéciales sont :

a) Des chips au vinaigre, qui ne sont pas très bonnes, donc de valeur v =−1 ?
b) Des chips au fromage, qui sont particulièrement bonnes, donc de valeur v = 3 ?
Maintenant le tas de chips est une pyramide : la première couche contient n chips, celle au

dessus n−1, celle au dessus n−2, et ainsi de suite jusqu’à avoir un tas de hauteur n. Une chips
ne peut être mangée que si elle est découverte, c’est-à-dire si la chips ou les deux chips juste
au dessus ont déjà été mangées.

Un exemple de partie est présenté figure 2. A chaque étape, les chips en bleu sont celles qui
peuvent être mangées. Au total, Anita a mangé 6 chips et Auriane a mangé 4 chips pendant
cette partie.
5.Reprendre les question 1. à 3. dans ce cadre.
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Figure 2. Un exemple de partie, avec une pyramide

Question complémentaire.Proposer et étudier d’autres pistes de recherche.

∗ ∗ ∗

2. Jeu du Moulin

Alphonse et Béatrice sont intrigués par le plateau du Jeu du Moulin, voir Figure 3.

Figure 3. Plateau du Jeu du Moulin classique

Ils remarquent que c’est une figure géométrique constituée de points et de bâtons droits,
vérifiants aux conditions suivantes :

a) Chaque bâton comporte exactement 3 points.
b) Chaque point appartient à exactement 2 bâtons.
c) Si deux bâtons s’intersectent, alors ils ne sont pas colinéaires.
Ils se demandent s’il y a d’autres figures avec ces propriétés, qu’ils appellent figure du

moulin. Pour une figure du moulin donnée, on note p le nombre total de ses points.
1.Quel est le p minimal tel qu’il existe une figure du moulin avec p points ?

On dit qu’une figure de moulin est connexe si on peut aller de n’importe quel point vers
n’importe quel autre en suivant les bâtons.
2.Déterminer tous les p∈N∗ pour lesquels il existe une figure du moulin connexe avec p points.

Béatrice fait remarquer que dans le jeu du moulin classique, les trois points d’un bâton sont
exactement ses deux extrémités, ainsi que son milieu.
3.Reprendre la question précédente avec cette contrainte.

On revient aux contraintes initiales a), b) et c). Alphonse remarque que parfois deux figures
qui semblent différentes ne changent rien au jeu. On dit que deux figures sont similaires quand
il existe une bijection entre les points respectant les bâtons
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Figure 4. Figure du moulin similaire au plateau classique

Par exemple, la figure du moulin présentée en Figure 4 est similaire à la figure du moulin
classique de la Figure 3.
4.Combien de figures du moulin existe-t-il avec p points, en identifiant les figures similaires ?

Béatrice propose de modifier les hypothèses : à présent, on veut qu’il existe exactement k
points par bâton (avec k > 3) et qu’exactement ` bâtons passent par chaque point (avec `> 2).
5.Reprendre les questions 2 et 4 dans ce cadre.
Question complémentaire.Proposer et étudier d’autres pistes de recherche.

∗ ∗ ∗

3. Poison dans les boissons

La Teinture Fumigée de Jais Mauve et Mauvaise (abrégée TFJM2) est un colorant (fictif)
incolore et inodore, mais mortel à la consommation (même en infime quantité). Lors d’un
transport de marchandises, d’infimes quantités de TFJM2se sont retrouvés dans les tonneaux
de jus de raisin de Nicolas. Il cherche un moyen de trouver quels sont les tonneaux empoisonnés.
Soit N ∈ N un entier naturel. On suppose que Nicolas dispose de N tonneaux numérotés de 1
à N , on suppose aussi que Nicolas sait que exactement k 6N tonneaux ont été contaminés.
Une stratégie de détection S est le choix d’un ou plusieurs tonneaux à tester qu’il verse (en
les mélangeant ou non) dans des verres de volume unité, puis qu’il teste à l’aide de détecteurs.
La stratégie est un succès si, partant de n’importe quelle configuration initiale de k tonneaux
empoisonnés, elle permet d’identifier les tonneaux empoisonnés et uniquement ceux-là. Sinon,
la stratégie est un échec.
Étant donnée une stratégie S, on note DN,k(S) le nombre de détecteurs qui ont été utilisés
dans cette stratégie. Une stratégie S est optimale si DN,k(S) est le plus petit possible.
Dans toutes les questions du problème, on pourra commencer par le cas k = 1.
1.Dans cette question, on suppose que les détecteurs sont parfaits, c’est-à-dire qu’ils détectent
la présence de TFJM2même infime dans n’importe quel mélange.
Déterminer une stratégie optimale de détection S et déterminer DN,k(S).
2.On fixe s ∈]0,1[. Dans cette question, on suppose que les détecteurs sont sensibles, c’est-à-
dire qu’il détecte la présence de poison si, et seulement si, sa concentration dans l’échantillon
testé est supérieur ou égal à s.
Déterminer une stratégie optimale de détection S et déterminer DN,k(S).
3.Dans cette question, on suppose que les détecteurs ne sont plus déterministes. On fixe p∈]0,1[
et q ∈ [0,1] et on suppose que la probabilité que le détecteur détecte la présence de poison est
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p et que la probabilité de faux-positif est q, c’est-à-dire
Pprésence de poison

(
détection positive

)
= p et Pabsence de poison

(
détection positive

)
= q

On fixe ε > 0. On dit qu’une stratégie S est ε-optimale si DN,k(S) est le plus petit possible
parmi toutes les stratégies pour lesquelles la probabilité d’échec est inférieure à ε.

a) Dans cette question et la suivante, on suppose que q= 0. Établir une stratégie de détection
pour laquelle la probabilité d’échec est inférieure à ε.

b) Déterminer une stratégie ε-optimale S et déterminer DN,k(S).
c) Mêmes questions avec q 6= 0.

4.Dans cette question, on suppose que les détecteurs sont non déterministes et dynamiques,
c’est-à-dire que la probabilité de détection positive en présence de poison est exactement égale
à la concentration de poison dans l’échantillon testé. On suppose qu’il n’y a pas de faux-positif.
On fixe ε > 0.

a) Établir une stratégie de détection pour laquelle la probabilité d’échec est inférieure à ε.
b) Déterminer une stratégie ε-optimale S et déterminer DN,k(S).

5.Reprendre les questions 1. et 2. en tenant compte de stratégies ε-optimales.
6.Proposer et étudier d’autres pistes de recherche.

∗ ∗ ∗

4. Colliers de perles

À la cour, un joaillier est spécialiste de fabrication de collier de perles pour les nobles gens.
Ayant des problèmes de livraison, il veut adapter son offre pour cacher la rupture de stock de
certaines perles.

Pour faire ses colliers, le joaillier dispose de différents types de perles, un type pour chaque
entier positif, appelée sa valeur (en pièces d’or). Un collier se caractérise par la succession des
valeurs des perles qui le composent, formant un cercle. On définit la longueur ` d’un collier
comme étant son nombre de perles et son prix p comme la somme des valeurs de ses perles.
On considère deux colliers comme étant les mêmes si on peut obtenir l’un à partir de l’autre
via une rotation.

1

2
2

0
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A

2

0
1

1
2

B

0

2
3

1
0

C

Figure 5. Trois colliers de longueur ` = 5 et de prix p = 6. Les colliers A et B
sont les mêmes.

Un jour, sa meilleure cliente, la marquise de Carabas, lui commande un collier avec 7 perles,
au prix de 5 pièces d’or, qui ne contient jamais 2 perles de valeur 0 à la suite.
1.Combien de colliers le joaillier peut-il lui proposer ?

Le joaillier souhaite anticiper les caprices de la marquise. On note C(`,p,m) l’ensemble des
colliers de longueur `, de prix p et qui ne contiennent pas m perles de valeur zéro à la suite.
2.À quelles conditions sur (`,p,m) le joaillier peut-il proposer au moins un collier à la marquise ?

Le joaillier rencontre un problème de livraison : seules les perles d’une valeur appartenant à
un certain sous-ensemble D ⊂ N sont disponibles. On note CD(`,p,m), l’ensemble des colliers
de C(`,p,m) constitués uniquement de perles de valeur dans D.
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3. SiD est l’ensemble des nombres pairs, à quelle(s) condition(s) sur (`,p,m) l’ensemble CD(`,p,m)
est-il non-vide ?
4.Pour D fixé, à quelle(s) condition(s) sur (`,p,m) a-t-on l’égalité C(`,p,m) = CD(`,p,m) ?
5. SiD= {0, 1}, combien de colliers sont dans CD(`,p,m) ? On pourra distinguer les cas suivants
où d= pgcd(`,p) :

a) d= 1,
b) d est un nombre premier,
c) d est quelconque.

6.Reprendre la Question 5 pour D = {0, 1, ..., k} où k est un entier positif quelconque.
Question complémentaire.Proposer et étudier d’autres directions de recherche.

∗ ∗ ∗

5. Parcours d’escalade

Afin de préparer des activités acrobatiques lors du prochain tournoi du TFJM2, Mathis sou-
haite construire un mur d’escalade qui permettrait à chacun de s’amuser selon ces capacités.

On appelle configuration tout ensemble fini de points du plan, appelés prises. Ces points
représentent les positions des prises d’escalade disponibles sur le mur. Une configuration mo-
délise donc la disposition géométrique fixe des prises sur la paroi.

Soit α ∈
]
0, π2

]
un réel fixé. Pour tout l ∈ R∗+, on appelle l–parcours de taille n > 1 une

succession de n+1 points, A0, A1, . . ., An vérifiant les conditions suivantes :
– le premier point A0 est situé n’importe où sur le sol (axe des abscisses), et chacun des autres
points est une prise ;

– pour tout i ∈ {0, . . . ,n−1}, la distance entre deux prises successives est AiAi+1 = l ;
– pour tout i∈ {0, . . . ,n−1}, le point Ai+1 est strictement plus haut que le point Ai et l’angle
entre la droite (AiAi+1) et la verticale est inférieur ou égal à α.

Autrement dit, le grimpeur commence où il souhaite au sol, attrape une première prise à distance
l et dans un angle limité à α, puis poursuit le parcours en montant ainsi de prise en prise, pour
un total de n prises. La figure 6 illustre une configuration avec deux parcours différents.

1.Dans un premier temps, Mathis souhaite disposer les prises de manière à permettre deux
types de parcours distincts.

a) Dans cette question, Mathis n’a le droit de placer qu’une seule prise sur le mur. Déter-
miner les conditions reliant l1, l2 ∈R∗+ et α ∈

]
0, π2

]
qui lui permette de la placer de sorte

à avoir à la fois un l1–parcours et un l2–parcours, tous deux de taille égale à 1.
b) Soit n > 1. Dans cette question, Mathis n’a le droit de placer que n prises sur le mur.

Déterminer les conditions reliant l1, l2 ∈R∗+ et α ∈
]
0, π2

]
qui lui permette de les placer de

sorte à avoir à la fois un l1–parcours de taille n, et n l2–parcours de taille 1 qui utilisent
chacun une prise différente.

2.Dans cette question, on supposera que α < π

2 . Mathis souhaite construire une configuration
qui permette la coexistence de deux parcours de caractéristiques différentes : un l1–parcours de
taille t1 et un l2–parcours de taille t2.

Déterminer le nombre minimal de prises N(l1, l2, t1, t2,α) nécessaire pour obtenir une
configuration comportant à la fois un l1–parcours de taille t1, et un l2–parcours de taille t2.
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α α
α α

α α

l2

α α

α α

l1

l2

Figure 6. Deux types de parcours : bleu (l1) et rouge (l2), chacun respectant
la contrainte de cône d’ouverture 2α. Les arcs marqués α indiquent chaque demi-
ouverture du cône autour de la verticale.

a) Étudier le cas où les pas sont proches, plus précisément l2
2 6 l1 < l2.

b) Étudier le cas où les pas sont de tailles très différentes, plus précisément l1 < l2
2 .

3.Dans cette question, on pourra se limiter au cas α= π

2 . Afin de modéliser le fait que certains
mouvements sont plus exigeants que d’autres, Mathis souhaite s’assurer qu’à chaque étape
d’un parcours, le grimpeur puisse choisir entre plusieurs types de mouvements, par exemple un
mouvement facile (à distance l1) ou un mouvement difficile (à distance l2) avec l1 < l2.

a) Soit n > 0. Déterminer, en fonction de n, l1 et l2, le nombre minimal de prises qu’il
est nécessaire d’utiliser afin de garantir la possibilité d’effectuer n mouvements à partir
d’un certain point de départ A0 fixé, en choisissant à chaque étape entre un mouvement
facile et un mouvement difficile.

b) Reprendre la question précédente avec d’avantage de type de mouvements. On commen-
cera par 3 types de mouvements.

4.En ouvrant une vieille boîte, Mathis découvre n prises d’escalade. Il souhaite les disposer sur
le mur de manière à obtenir le plus grand nombre possible de parcours réalisables.

a) Pour un angle α et une longueur de pas l > 0 fixés, déterminer une disposition des n
prises qui maximise le nombre de l–parcours distincts possibles. Deux parcours
sont considérés comme distincts s’ils ne passent pas par exactement les mêmes prises (le
point de départ au sol n’importe pas).

b) Discuter le cas où plusieurs longueurs de mouvement sont autorisées (par exemple l1 < l2),
et proposer des configuration qui permettent simultanément un grand nombre de parcours
de différents types.

Question complémentaire.Proposer et étudier d’autres directions de recherche.

∗ ∗ ∗
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6. Malaise dans la salle d’attente

Dans un grand hôpital d’une contrée lointaine, la salle d’attente est composée de tabourets
qui forment une grille m×n. L’hôpital cherche à maximiser la capacité de cette salle d’attente.
Le problème est que les habitants de cette contrée sont très timides : ils se sentent mal à l’aise
s’il y a quelqu’un assis sur l’un des quatre tabourets adjacents.

On dit que la salle est quasi-complète si personne n’est mal à l’aise, et plus personne ne
peut s’asseoir sans être mal à l’aise ou rendre quelqu’un d’autre mal à l’aise.
1.Dans cette question, le personnel de l’hôpital place les gens comme il le souhaite pour placer
un maximum de personnes sans que personne ne mal à l’aise. Combien de personnes peut-il
placer en fonction de m et n ?

Pour les questions suivantes, chaque siège a une orientation fixée (Nord, Sud, Est ou Ouest),
et chaque personne assise sur un siège regarde dans la direction associée, à une distance égale à
1 (elle ne voit que l’éventuel siège à côté du sien, dans la direction de son regard). Encore une
fois, personne ne veut être assis dans le champ de vision de quelqu’un d’autre.

On appelle configuration un tableau associant à chaque chaise une orientation. Pour D est
une configuration, on définit Cmax(D) comme le nombre maximal de personnes pouvant être
placées sans créer de malaise, et Cmin(D) comme le nombre minimal de personnes nécessaires
pour que la salle soit quasi-complète. Voir Figure 7.
2. a) Que peut valoir Cmax(D) au maximum (autrement dit, si l’hôpital choisit D de manière
optimale) ? On pourra commencer par n= 1, 2, 3.

b) Reprendre la question précédente pour Cmin(D).

→ ↑ → ←
↓ ← → ↑
↓ ↑ ↑ ←

↑ ←
← →

↓

Figure 7. A gauche : Exemple de configuration avec m= 3 et n= 4.
A droite : Exemple de manière de la remplir. Ce remplissage serait quasi-complet
en ajoutant une personne en bas à droite. Cela assure que, pour cette configura-
tion D en particulier, Cmin(D)≤ 6≤ Cmax(D).

Une vague de chaleur s’étant emparé de la salle d’attente, l’hôpital décide de remplacer
certaines chaises par des fontaines à eau. Si une chaise est orientée dans la direction d’une
fontaine, une personne s’y asseyant ne regarde que la fontaine, ne mettant personne mal à
l’aise.

Une configuration peut donc maintenant associer à chaque emplacement une chaise dans
une certaine orientation comme précédemment, ou bien une fontaine. Voir Figure 8.
3. Soit p ∈ N∗. Dans cette question uniquement, on suppose que, pour installer les fontaines,
l’hôpital doit choisir p rangées (verticales et/ou horizontales), et l’intégralité des chaises y est
remplacé par des fontaines.

Reprendre la question 2b) dans ce cadre, en fonction de p. On pourra commencer par p= 1.
4. Soit p ∈ N∗. Dans cette question uniquement, on suppose que l’hôpital peut au contraire
remplacer les p chaises de son choix par des fontaines.

Reprendre la question 2b) dans ce cadre, en fonction de p.

5.On revient dans la situation du début du problème, où les chaises sont des tabourets.
Les personnes arrivent une par une et, lorsqu’une personne arrive, elle s’assoit sur un tabouret

aléatoire choisi uniformément parmi les tabourets possibles (i.e. sans être mal à l’aise). On note
E(m,n) l’espérance du nombre de personnes pouvant s’asseoir.
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× × × ×
↓ × → ↑
↓ × ↑ ←

(a) Une configuration valide pour les questions 4
(p = 2) et 5 (p = 6).

→ ↑ × ←
× × → ↑
↓ ↑ ↑ ←

(b) Une configuration valide pour la question 5
(p = 3), mais pas la question 4.

Figure 8. Exemples de nouvelles configuration avec m= 3 et n= 4

Estimer la valeur de E(m,n) en fonction de m et n.
Question complémentaire.Proposer et étudier d’autres directions de recherche.

∗ ∗ ∗

7. Double et chiffres

On appelle nombre permutatif un nombre de N∗ dont le double est constitué des mêmes
chiffres dans un ordre quelconque, sauf un unique chiffre (compris entre 0 et 4) qui est remplacé
par son double.

Par exemple, 2×163 = 326 : son double est constitué des mêmes chiffres, sauf un chiffre 1 qui
est remplacé par un chiffre 2. En revanche, le nombre 11 n’est pas permutatif, car pour obtenir
2×11 = 22 il faudrait remplacer deux de ses chiffres par leurs doubles.

Parmi ceux-là, on appelle :
— nombre rotatif un nombre tel que la permutation consiste en faire passer le premier

chiffre en dernier, et c’est ce chiffre qui est doublé. Par exemple, 253 serait rotatif si son
double était 534.

— nombre fitator un nombre tel que la permutation consiste en faire passer le dernier
chiffre en premier, et c’est ce chiffre qui est doublé. Par exemple, 253 serait fitator si son
double était 625.

Le nombre 163 n’est ni rotatif ni fitator. Voir la figure 9.

1

2

6

6

3

3

3

6

4

4

7

7

1

1

3

3

4

4

7

7

1

2

Figure 9. A gauche : Le nombre 163 est permutatif. Au centre : Le nombre
3471 serait rotatif si son double était 4716. A droite : Le nombre 3471 serait
fitator si son double était 2347.

1. Soit n≥ 2.
a) Existe-t-il un nombre rotatif à n chiffres ?
b) Déterminer (ou encadrer aussi précisément que possible) le nombre de nombres rotatifs

à n chiffres.

2. Soit n≥ 2.
a) Existe-t-il un nombre fitator à n chiffres ?
b) Déterminer (ou encadrer aussi précisément que possible) le nombre de nombres fitators

à n chiffres.

3. Soit n≥ 2.
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a) Soit c ∈ {0,1,2, ...,9}. Existe-t-il un nombre permutatif à n chiffres qui finit par le chiffre
c ?

b) Déterminer (ou encadrer aussi précisément que possible) le nombre de nombres permu-
tatifs à n chiffres. En particulier, déterminer la limite de ce nombre divisé par 9×10n−1,
si elle existe. (9×10n−1 étant le nombre de nombres à n chiffres.)

4.Reprendre la sous-question précédente dans d’autres bases de numérotation.
Question complémentaire.Proposer et étudier d’autres pistes de recherche.

∗ ∗ ∗

8. Tri trop rapide

Gaston souhaite trier par ordre croissant une liste de N ≥ 2 nombres de [0 ;1[ tous différents.
Ne s’y connaissant pas trop en informatique, il propose l’algorithme suivant :

— On numérote la liste de départ [a1;a2;a3; · · · ;aN ] et on commence avec une liste d’arrivée
vide.

— On place a1 dans la liste d’arrivée.
— On place a2 dans la liste d’arrivée : s’il est dans l’intervalle [0;1/2[, on le met en premier,

et s’il est dans l’intervalle [1/2;1[ on le met en deuxième.
— On place a3 dans la liste d’arrivée : s’il est dans l’intervalle [0;1/3[, on le met en premier ;

s’il est dans l’intervalle [1/3;2/3[ on le met en deuxième ; et s’il est dans l’intervalle [2/3;1[
on le met en troisième.

— Plus généralement, on place successivement an dans la liste d’arrivée : on le met en k-ième
position, où k est tel que an ∈ [(k−1)/n;k/n[.

Par exemple, à partir de la liste [0,1 ; 0,8 ; 0,7 ; 0,2], Gaston obtient successivement [0,1],
[0,1 ; 0,8], [0,1 ; 0,8 ; 0,7] et enfin [0,2 ; 0,1 ; 0,8 ; 0,7].

On note G la fonction qui correspond à l’algorithme de Gaston : G([0,1 ; 0,8 ; 0,7 ; 0,2]) =
[0,2 ; 0,1 ; 0,8 ; 0,7].

On observe que cet algorithme ne permet pas toujours de trier la liste. L’objectif de ce
problème est d’étudier dans quelle mesure il est efficace.

Dans tout le problème, une liste est dite triée si elle est ordonnée dans l’ordre croissant.
1.Quelles listes L triées vérifient G(L) = L ?

Voyant que le comportement de son algorithme dépend beaucoup de l’ordre dans lequel la liste
de départ est ordonnée, Gaston décide de commencer par mélanger la liste avant d’appliquer
son algorithme.

Pour une liste L de longueur n, on noteN(L) le nombre de listes L′ telles queG(L′) =L. Noter
que siG(L′) =L, alors L′ est constituée des mêmes nombre que L, dans un ordre potentiellement
différent. L’exemple précédent démontre que N([0,2 ; 0,1 ; 0,8 ; 0,7])≥ 1, car il existe au moins
une liste qui fonctionne.
2.Caractériser les listes L telles que, pour toute permutation L′ de L, N(L′) = 1.
3.Parmi les listes L triées de longueur n, déterminer (ou encadrer aussi précisément que pos-
sible) la valeur minimale de N(L). En particulier, on cherchera la limite du minimum de N(L)

n!
quand n→∞, si elle existe. (Autrement dit, à quel point l’algorithme peut-il être mauvais ?)
4.Reprendre la question précédente pour la valeur maximale de N(L). (Autrement dit, à quel
point l’algorithme peut-il être bon ?)
5. Soit L une liste triée de longueur n. Est-il possible que, pour une permutation L′ de L,
N(L′)>N(L) ? (Autrement dit, cet algorithme a-t-il toujours tendance à trier ?)
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Si oui, donner des exemples pour lesquelles cette inégalité est largement mise en défaut.
Si non, caractériser les listes qui atteignent l’égalité.

Voyant que son algorithme a du mal à trier toutes les listes, surtout les plus longues, Gaston
a l’idée suivante pour améliorer ses chances de trier sa liste :

— On applique une première fois l’algorithme.
— Si on obtient une liste triée, on s’arrête. Sinon, on recommence à partir de la nouvelle

liste.
Par exemple, on a vu que G([0,1 ; 0,8 ; 0,7 ; 0,2]) = [0,2 ; 0,1 ; 0,8 ; 0,7]. Une étape ne

suffit donc pas à trier. On continue : G([0,2 ; 0,1 ; 0,8 ; 0,7]) = [0,1 ; 0,2 ; 0,7 ; 0,8]. On a
réussi à trier la liste, donc on s’arrête.

Pour une liste L de longueur n, on note N ′(L) le nombre de manières de former une liste que
l’algorithme finit par trier, parmi les n! permutations de L.

Par exemple, les calculs précédents assurent que N ′([0,1 ; 0,2 ; 0,7 ; 0,8]) ≥ 2 car on a vu
deux ordres ([0,1 ; 0,8 ; 0,7 ; 0,2] et [0,2 ; 0,1 ; 0,8 ; 0,7]) à partir desquels la liste est triée.
6.Est-il possible, pour une liste L triée, que N(L) soit égal à N ′(L) ? (Autrement dit, itérer
peut-il être inutile ?)
Si oui, caractériser les listes qui le vérifient.
Si non, quantifier l’écart minimal entre N(L) et N ′(L).
7.Parmi les listes L de longueur n, déterminer (ou encadrer aussi précisément que possible) la
valeur maximale de N ′(L). En particulier, on cherchera la limite du maximum de N ′(L)

n! quand
n→∞, si elle existe. (Autrement dit, à quel point l’algorithme peut-il être bon ?)
8.Parmi les listes L de longueur n, déterminer (ou encadrer aussi précisément que possible) le
nombre maximal d’étapes à effectuer pour trier la liste, au bout duquel toute liste soit a déjà
été triée soit ne le sera jamais. (Autrement dit, à quel point l’algorithme peut-il être lent ?)
Question complémentaire.Proposer et étudier d’autres pistes de recherche.

∗ ∗ ∗

Quelques formulations fréquentes

Déterminer (ou encadrer aussi précisément que possible) [telle quantité].
Pour répondre parfaitement à la question, il faut déterminer la valeur exacte. Néanmoins,
si c’est trop difficile, une réponse partielle peut consister à trouver un minorant aussi grand
que possible, et un majorant aussi petit que possible. Par exemple, si vous conjecturez que
f(n) = n3, démontrer que n2 < f(n)< 2n3 peut déjà être intéressant. Cela s’applique également
pour une question dont l’énoncé est plutôt "Estimer [telle quantité].", ou même simplement
"Déterminer [telle quantité].".

Soit n ∈N. [telle question]. (ou toute autre variable introduite en début de ques-
tion ou de partie)
Il s’agit de répondre à la question en fonction de n. Pour répondre parfaitement à la question,
la réponse doit couvrir toutes les valeurs possibles.
Néanmoins, une réponse partielle (par exemple : seulement pour les valeurs de n qui sont des
nombres premiers) peut déjà être intéressante.
Quel score [telle joueuse] peut-elle obtenir, quelle que soit la manière de jouer

de son adversaire ?
Pour répondre à la question, il faut s’assurer de proposer une stratégie qui fonctionne non
seulement si l’adversaire effectue des coups qui semblent logique, mais bien quels que soient les
coups qu’il effectue.
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En particulier, dans un jeu fini déterministe au tour par tour où deux joueuses sont opposés,
une joueuse a une stratégie gagnante si et seulement si son adversaire n’a pas de stratégie
non-perdante.
Trouver des conditions pour [tel énoncé].

Il existe deux types de conditions :
— D’une part, il peut être intéressant de trouver des conditions suffisantes : si elles sont

vérifiées, alors l’énoncé est correct. Une condition suffisante est d’autant plus intéressante
qu’elle est peu restrictive. (Par exemple, démontrer que l’énoncé est correct pour tout n
pair est plus intéressant que de démontrer qu’il est correct pour tout n multiple de 4.)

— D’autre part, il peut être intéressant de trouver des conditions nécessaires : si l’énoncé
est correct, alors elles sont vérifiées.
Une condition nécessaire est d’autant plus intéressante qu’elle est restrictive. (Par exemple,
démontrer que l’énoncé est correct seulement pour des nmultiples de 4 est plus intéressant
que de démontrer qu’il est correct seulement pour des n pairs.)

L’idéal est de trouver un ensemble de conditions à la fois nécessaires et suffisantes : l’énoncé
est correct si et seulement si elles sont vérifiées.
Proposer et étudier d’autres pistes de recherche.

Cette question est complémentaire et largement facultative. Les pistes de recherche doivent être
étroitement liées au problème initial.
Ce qui a de la valeur n’est pas le fait de proposer des pistes de recherche en soi, mais bien de
trouver des raisonnements intéressants pour les étudier.
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